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Current stroke detection methods require too much time
for the interpretation of scan results and classification
process, delaying treatment and increasing the chance of
lasting effects.

Engineering Objective

The objective of this project was to create a machine
learning model to automatically detect and classify strokes
using CT images in order to aid with the diagnostic process.

Strokes occur when blood
flow to brain is prevented

Ischemic Strokes

Methods of Diagnosis L
« CT Scans
« MRI Scans
Microwave imaging

Symptoms and Effects

Prelabeled CT images from various

+ Numbness or weakness, %
medical centers were collected

especially on one side of the body

+ Sudden confusion or difficulty
speaking

+ Sudden severe headache

+ Could potentially lead to loss of
mobility or death
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Each image was normalized and used to
create a training, testing, and validation set

=02

Using the images from the training and validation
sets, an image classification model was developed

The model was evaluated using the testing
data, and the model's metrics were collected
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Steps 3 and 4 were repeated until the
optimal model was developed

o . o
A Design Matrix
Evaluation of Comman Classification Techniques in Image Classification

Suitable with small datasets 6 3 5 2 4

High accuracy of output 10 6 8 7 8

P iU n f High testing and training speed 9 6 8 4 8
‘ J a®n Capable of dealing with large number of features 8 3 5 5 7

Easily improved and configured 7 3 5 5 5

Tnta\‘ 40 ‘ 21 |

Percent |_100% 53% 78% 60% 83%
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* Final model classifies strokes with 89.6% testing accuracy and
90.3% validation accuracy

* Demonstrates the use of neural networks as a viable method of
stroke classification

* Final model returns chance of abnormality from cranial CT scan

* Final model was a significant improvement over the first model,
with a p-value of 0.0001

% Conv2D
- Max Pooling
’ Flatten

¢ Testing on larger datasets

* Increasing classes to include other
cranial diseases

¢ Testing during the real-time stroke
diagnosis process

¢ Testing on other types of medical
imaging (MRI or microwave imaging)
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Strokes — General Information

Ischemic strokes - blood clot
prevents blood from
reaching the brain

Hemorrhagic strokes - blood
vessel bursts in the brain and
causes blood buildup

Symptoms and Effects

e Numbness or weakness,
especially on one side of the body

e Sudden confusion or difficulty
speaking

» Sudden severe headache

» Could potentially lead to loss of
mobility or death
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ittt 800,000

people in the United States alone suffer from a
stroke each year. Strokes are the second leading
cause of death worldwide, the leading cause of
long term disability, and often leave patients with
limited mobility.



Stroke Detection — Diagnostic Process

Begins with physical examination by physician

Medical Imaging
CT Scans

MRI Scans
Microwave Imaging

Examination, interpretation, and classification




Image Classification

Branch of machine learning

Supervised learning

Models assign labels to images using patterns

determined from training data
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Problem and Objective
Problem Statement

The current stroke diagnostic
process is hindered by the need
for human interpretation and
classification of medical scans

Requires too much time and
delays treatment to the patient

Engineering Objective

The objective of this projectis to
design an image classification
model to automatically detect
and classify strokes using images
from CT scans




Materials and Methods

Design Criteria and Matrix
Materials Used
Procedures



Design Criteria

Be able to evaluate inputs with high number of features
Must have high accuracy outputs

Must have low testing and training times

Should be suitable with small datasets (~500-1000 images)

Should be able to be configured and improved easily



Evaluation of Common Classification Technigues in Image Classification

Criteria Max | Decision Tree SVIM KNN CNNM
suitable with small datasets b 3 3 2 4
High accuracy of output 10 o 8 7 8
High testing and training speed g b 8 4 8
Capable of dealing with large number of features 8 3 5 ] 7
Easily improved and configured 7 3 5 5 ]
Total 40 21 31 24 33

Percent | 100% 53% 78% 60% 83%

Decision Matrix

Comparing common classification algorithms and their applications in image classification




Materials Used
Python (programming language)

Google Colaboratory (Jupyter
Notebook runtime environment)

Keras (deep-learning API for Python)

Datasets of CT scans of strokes
natients (both ischemic and
nemorrhagic) and healthy patients




Prelabeled CT images from various
medical centers were collected

Each image was normalized and used to
Image w 1z u 02

create a training, testing, and validation set

Image Collection and Processing
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Using the images from the training and validation
sets, an image classification model was developed
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The model was evaluated using the testing
data, and the model's metrics were collected

Steps 3 and 4 were repeated until the
optimal model was developed
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Model Creation and Testing



Prototypes and Designs

Prototype Models
Primary Models
Final Model
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Example Convolutional Neural Network Structure



Prototypes
Purpose and Structure
Binary classification models

Used to find effective designs for
later variations

Composed of 3 convolutional
layers (64 filters each, Average
Pooling)

Results

Much overfitting (often a result of
too many parameters or layers)

Provided model to be used as
baseline for primary models




Primary Model 1

3 convolutional layers
Kernel sizes: 9x9, 5x5,
3x3
Filters: 32, 64, 128

2x2 Average Pooling layers
following convolutional
layers

Flatten layer, dense layer
(64 output), dense layer
(final output)

Primary Models - Architecture

Primary Model 2

3 convolutional layers
Kernel sizes: 9x9, 5x5,
3x3
Filters: 16, 32, 64

2x2 Max Pooling layers
following convolutional
layers

Flatten layer, dense layer
(64 output), dense layer
(final output)

Final Model

4 convolutional layers
Kernel sizes: 9x9, 7x7,
X7, 3x3
Filters: 32, 64, 64, 128

3x3 or 2x2 Max Pooling
layers following
convolutional layers

Flatten layer, dense layer
(64 output), dense layer
(final output)

50% dropout layer
following first dense layer
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Training and Validation Accuracy
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Primary Model 1 — Prototype Design




Accuracy (%)

Training and Validation Accuracy

1.00 -
0.95 -
0.90 -
0.85 -
0.80 -
0.75 - — T A
___.-"f.! - H‘x‘__.-"f .'-._ .-I,-
" \
0.70 - ~ e
. P = Train
e A
0654 7 validation
1 1 I I I 1 1 1
0.0 25 5.0 75 100 125 150 175
Epoch

Training and Validation Loss

4.0 1
e AN . ﬂ
35 Validation o e .IH*. A
_.-"f.. l".l .-'I I|
3.0 1 fﬁx / y x
""ﬁ‘“'x ."'- -.". / 1
25 - _,.,-'"'“-.- -\.H_w_.l \ lIl..._.__.--" III
’ b / | A
. J
v 20 - ‘Wi <
g W
15 -
110 A
"~ k—k__
0.0 A -
I ] ] I ] I ] I
0.0 25 5.0 15 10.0 12.5 15.0 17.5
Epoch

Primary Model 2 — Introduction of Max Pooling
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Results

Model Metrics
Final Model Results



Primary Model 1
Accuracy: 76.6%
Loss: 7.839
Runtime: 53ms per batch

3,085,315 parameters

Severe overfitting to
training data

Model Comparison (Metrics)

Primary Model 2
Accuracy: 79.2%
Loss: 2.239
Runtime: 26ms per batch

557,443 parameters

Moderate overfitting to
data

Final Model
Accuracy: 89.6%
Loss: 0.223
Runtime: 19ms per batch

410,691 parameters

Highest accuracy and
lowest loss values



Actual Class

Validation Data Testing Data

True label

Predicted label
Predicted Class

Final Model — Confusion Matrices



Analysis, Conclusion, and
Future Extensions

Result Analysis and Significance

Conclusions
Future Possibilities



Model Comparison — McNemar’s Test

Model 1
Correct |Incorrect |Total
Correct 114 25 139
Model 3 |Incorrect 4 11 15
Total 118 30 154
y¥2 15.2069
p-value | 0.0001




ROC Curve Comparison
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Conclusion

Final model classifies with high accuracy

89.6% testing accuracy and 90.3% validation accuracy
Demonstrates the use of neural networks as a viable method of
stroke classification

Final model able to return chance of abnormality from cranial CT
scan

Final model was a significant improve over the primary model 1,
with a p-value of ~0.0001



Future Extensions

Testing on larger datasets

Increasing classes to include other diseases

Testing during the real-time stroke diagnosis process

Testing on other types of medical imaging
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Training and Validation Accuracy
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Layer (type) output Shape

conv2d {Conv2D) {None, 248, 248, 32)

average pooling2d (AverageP (None, 124, 124, 32)

ooling2D)

conv2d_1 {Conv2D) {(None, 128, 128, &4)
average_pooling2d 1 (Averag (None, 48, 48, &4)
ePooling2D)
conv2d_2 (Conv2D) {NoOne, 28, 38, 128)
average_pooling2d 2 {(Averag (None, 19, 19, 128)
ePooling2D)

flatten (Flatien) {None, 46288)

dense (Dense) {None, &4)

dense_1 (Dense) (None, 3)

Total params: 2,885,315
Trainable params: 3,885,315
Non-trainable params: @

Param #

2624

a8

2957376

195

Layer (type) Output Shape

conv2d (Conv2D) (None, 248, 248, 16)

max_pooling?2d (MaxPooling2D (None, 82, 82, 16)

)
conv2d 1 (Conv2D) (None, 78, 78, 32)

max_pooling?2d 1 (MaxPooling (None, 26, 26, 32)
2D)

conv2d 2 (Conv2D) (None, 24, 24, 64)

max_pooling2d 2 (MaxPooling (None, 8, 8, 64)
2D)

flatten (Flatten) (None, 4896)

dense (Dense) (None, 128)

dense_1 (Dense)
Total params: 557,443

Trainable params: 557,443
Non-trainable params: @




accuracy, outputs, spec acc = testModel(X test, y test)
print{accuracy)
print{outputs)
print(spec_acc)

g.589618339616838961
[1, ©.4173285404880676, ©.82806854248046375, ©.8064313411712646484, 2, 2,
[6.97435807435809743, 6.821917888219178, ©.9523889523889523, [15, 1, 8]]
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Lw) = = ) ;- log(9)
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¢(x) = max(0, x)




