
Conclusions

• Final model classifies strokes with 89.6% testing accuracy and 
90.3% validation accuracy

• Demonstrates the use of neural networks as a viable method of 
stroke classification

• Final model returns chance of abnormality from cranial CT scan
• Final model was a significant improvement over the first model, 

with a p-value of 0.0001

Extensions

• Testing on larger datasets
• Increasing classes to include other 

cranial diseases
• Testing during the real-time stroke 

diagnosis process
• Testing on other types of medical 

imaging (MRI or microwave imaging)

Background

Current stroke detection methods require too much time 
for the interpretation of scan results and classification 

process, delaying treatment and increasing the chance of 
lasting effects.

Problem Statement

The objective of this project was to create a machine 
learning model to automatically detect and classify strokes 
using CT images in order to aid with the diagnostic process.
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1.
Background and 

Objectives

Strokes
Stroke Detection
Image Classification
Project Objectives



Strokes – General Information

○ Ischemic strokes – blood clot 
prevents blood from 
reaching the brain

○ Hemorrhagic strokes – blood 
vessel bursts in the brain and 
causes blood buildup



Stroke Detection – Diagnostic Process

○ Begins with physical examination by physician

○ Medical Imaging
◉ CT Scans
◉ MRI Scans
◉ Microwave Imaging

○ Examination, interpretation, and classification



Image Classification

○ Branch of machine learning 

○ Supervised learning

○ Models assign labels to images using patterns 
determined from training data



Problem and Objective

Problem Statement

◎ The current stroke diagnostic 
process is hindered by the need 
for human interpretation and 
classification of medical scans

◎ Requires too much time and 
delays treatment to the patient

Engineering Objective

◎ The objective of this project is to 
design an image classification 
model to automatically detect 
and classify strokes using images 
from CT scans



2.
Materials and Methods

Design Criteria and Matrix
Materials Used
Procedures



Design Criteria

○ Be able to evaluate inputs with high number of features

○ Must have high accuracy outputs

○ Must have low testing and training times

○ Should be suitable with small datasets (~500-1000 images)

○ Should be able to be configured and improved easily



Decision Matrix

Comparing common classification algorithms and their applications in image classification



Materials Used

◎ Python (programming language)

◎ Google Colaboratory (Jupyter 
Notebook runtime environment)

◎ Keras (deep-learning API for Python)

◎ Datasets of CT scans of strokes 
patients (both ischemic and 
hemorrhagic) and healthy patients
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Image Collection and Processing
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Image Equalization



v

Model Creation and Testing



3.
Prototypes and Designs

Prototype Models
Primary Models
Final Model



Example Convolutional Neural Network Structure



Prototypes

Purpose and Structure

◎ Binary classification models

◎ Used to find effective designs for 
later variations

◎ Composed of 3 convolutional 
layers (64 filters each, Average 
Pooling)

Results

◎ Much overfitting (often a result of 
too many parameters or layers)

◎ Provided model to be used as 
baseline for primary models



Primary Models - Architecture

Primary Model 1

◎ 3 convolutional layers 
○ Kernel sizes: 9x9, 5x5, 

3x3
○ Filters: 32, 64, 128

◎ 2x2 Average Pooling layers 
following convolutional 
layers

◎ Flatten layer, dense layer 
(64 output), dense layer 
(final output)

Primary Model 2

◎ 3 convolutional layers 
○ Kernel sizes: 9x9, 5x5, 

3x3
○ Filters: 16, 32, 64

◎ 2x2 Max Pooling layers 
following convolutional 
layers

◎ Flatten layer, dense layer 
(64 output), dense layer 
(final output)

Final Model

◎ 4 convolutional layers 
○ Kernel sizes: 9x9, 7x7, 

7x7, 3x3
○ Filters: 32, 64, 64, 128

◎ 3x3 or 2x2 Max Pooling 
layers following 
convolutional layers

◎ Flatten layer, dense layer 
(64 output), dense layer 
(final output)

◎ 50% dropout layer 
following first dense layer
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Primary Model 1 – Prototype Design



Primary Model 2 – Introduction of Max Pooling



Primary Model 3 – Introduction of Dropout Layer



Final Model – Architecture
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Results
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Model Comparison (Metrics)

Primary Model 1

◎ Accuracy: 76.6%

◎ Loss: 7.839

◎ Runtime: 53ms per batch

◎ 3,085,315 parameters

◎ Severe overfitting to 
training data

Primary Model 2

◎ Accuracy: 79.2%

◎ Loss: 2.239

◎ Runtime: 26ms per batch

◎ 557,443 parameters

◎ Moderate overfitting to 
data

Final Model

◎ Accuracy: 89.6%

◎ Loss: 0.223

◎ Runtime: 19ms per batch

◎ 410,691 parameters

◎ Highest accuracy and 
lowest loss values



Final Model – Confusion Matrices

Validation Data Testing Data



5.
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Conclusions
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Model Comparison – McNemar’s Test



Model Analysis – ROC Curve and Precision-Recall



Conclusion

◎ Final model classifies with high accuracy

◎ 89.6% testing accuracy and 90.3% validation accuracy

◎ Demonstrates the use of neural networks as a viable method of 
stroke classification

◎ Final model able to return chance of abnormality from cranial CT 
scan

◎ Final model was a significant improve over the primary model 1, 
with a p-value of ~0.0001



Future Extensions

◎ Testing on larger datasets

◎ Increasing classes to include other diseases

◎ Testing during the real-time stroke diagnosis process

◎ Testing on other types of medical imaging
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